The role of tropical deep convective clouds on temperature, water vapor, and dehydration in the tropical tropopause layer (TTL)
نویسندگان
چکیده
Temperature and water vapor variations due to clouds in the tropical tropopause layer (TTL) are investigated using co-located MLS, CALIPSO, and CloudSat data. Convective cooling occurs only up to the cloud tops, with warming above these heights in the TTL. Water vapor and ozone anomalies above the cloud tops are consistent with the warming being due to downward motion. Thicker clouds are associated with larger anomalies. Environmental water vapor below cloud tops can be either higher or lower than when clouds are absent, depending on the cloud top height. The critical factor determining the sign of this change appears to be the relative humidity. In general cloud-forming processes hydrate the environment below 16 km, where the air after mixing between cloud and the environmental air does not reach saturation, but clouds dehydrate above 16 km, as the larger temperature drop and the high initial relative humidity cause supersaturation to occur. Negative water vapor anomalies above cloud tops compared to clear skies suggest another dehydration mechanism operating above the detected cloud layers.
منابع مشابه
Implications of the day versus night differences of water vapor, carbon monoxide, and thin cloud observations near the tropical tropopause
[1] There are some interesting day versus night differences in the water vapor and carbon monoxide concentrations near the tropopause over tropical land and ocean from 4 years of EOS Microwave Limb Sounder (MLS) observations. To interpret these differences, the diurnal cycle of deep convection reaching near tropical tropopause summarized from a decade of tropical rainfall measuring mission (TRM...
متن کاملHow do the water vapor and carbon monoxide ‘‘tape recorders’’ start near the tropical tropopause?
[1] This paper evaluates geo-seasonal relationships in tropical deep convection using radar and infrared data from Tropical Rainfall Measuring Mission (TRMM), near tropopause thin clouds from Stratospheric Air and Gas Experiment (SAGE) II, water vapor and carbon monoxide (CO) from the Earth Observing System (EOS) Microwave Limb Sounder (MLS), and the tropopause temperature from National Center ...
متن کاملConvective formation of pileus cloud near the tropopause
Pileus clouds form where humid, vertically stratified air is mechanically displaced ahead of rising convection. This paper describes convective formation of pileus cloud in the tropopause transition layer (TTL), and explores a possible link to the formation of long-lasting cirrus at cold temperatures. The study examines in detail in-situ measurements from off the coast of Honduras during the Ju...
متن کاملAn Intercomparison of Microphysical Retrieval Algorithms for Upper- Tropospheric Ice Clouds
U pper-tropospheric ice clouds are important modulators of the Earth’s climate, cover 20% of the globe at any given time (Liou 1986), and occur ~43% of the time in long-term satellite datasets (Wylie and Menzel 1999). Ice clouds, such as cirrus, tend to ref lect less incoming solar radiation and absorb more infrared radiation than water clouds, which are typically optically thicker and occur at...
متن کاملTitle of Dissertation: THE EFFECT OF DEEP CONVECTION ON TEMPERATURES IN THE TROPICAL TROPOPAUSE LAYER AND ITS IMPLICATIONS TO THE REGULATION OF TOROPICAL LOWER STRATOSPHERIC HUMIDITY
Title of Dissertation: THE EFFECT OF DEEP CONVECTION ON TEMPERATURES IN THE TROPICAL TROPOPAUSE LAYER AND ITS IMPLICATIONS TO THE REGULATION OF TOROPICAL LOWER STRATOSPHERIC HUMIDITY Hyun Cheol Kim, Doctor of Philosophy, 2005 Dissertation directed by: Dr. Andrew E. Dessler Department of Meteorology This dissertation focuses on the impact of deep convection on the thermal structure in the Tropic...
متن کامل